Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Disord ; 38(11): 2094-2102, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37702261

RESUMO

BACKGROUND: There is a growing body of evidence suggesting that botulinum toxin can alter proprioceptive feedback and modulate the muscle-spindle output for the treatment of dystonia. However, the mechanism for this modulation remains unclear. METHODS: We conducted a study involving 17 patients with cervical dystonia (CD), seven of whom had prominent CD and 10 with generalized dystonia (GD) along with CD. We investigated the effects of neck vibration, a form of proprioceptive modulation, on spontaneous single-neuron responses and local field potentials (LFPs) recorded from the globus pallidum externus (GPe) and internus (GPi). RESULTS: Our findings demonstrated that neck vibration notably increased the regularity of neck-sensitive GPi neurons in focal CD patients. Additionally, in patients with GD and CD, the vibration enhanced the firing regularity of non-neck-sensitive neurons. These effects on single-unit activity were also mirrored in ensemble responses measured through LFPs. Notably, the LFP modulation was particularly pronounced in areas populated with burst neurons compared to pause or tonic cells. CONCLUSION: The results from our study emphasize the significance of burst neurons in the pathogenesis of dystonia and in the efficacy of proprioceptive modulation for its treatment. Moreover, we observed that the effects of vibration on focal CD were prominent in the α band LFP, indicating modulation of pallido-cerebellar connectivity. Moreover, the pallidal effects of vibration in GD with CD involved modulation of cerebro-pallidal θ band connectivity. Our analysis provides insight into how vibration-induced changes in pallidal activity are integrated into the downstream motor circuit. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Distúrbios Distônicos , Torcicolo , Humanos , Torcicolo/tratamento farmacológico , Torcicolo/patologia , Globo Pálido/patologia , Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/terapia , Pescoço
2.
Parkinsonism Relat Disord ; 112: 105447, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267819

RESUMO

OBJECTIVES: The aim of this paper is to find the differences in the physiology of the pallidal neurons in DYT1 and non-DYT1 dystonia. METHODS: We performed microelectrode recording of the single unit activity in both segments of the globus pallidus during stereotactic implantation of electrodes for deep brain stimulation (DBS). RESULTS: We found a reduced firing rate, reduced burst rate, and increased pause index in both pallidal segments in DYT1. Also, in DYT1 the activity in both pallidal segments was similar, but not so in non-DYT1. CONCLUSION: The results suggest a common pathological focus for both pallidal segments, located in the striatum. We also speculate that strong striatal influence on GPi and GPe overrides other input sources to the pallidal nuclei causing similarity in neuronal activity. SIGNIFICANCE: We found significant differences in neuronal activity between DYT1 and non-DYT1 neurons. Our findings shed light on the pathophysiology of DYT-1 dystonia which can be very different from non-DYT1 dystonia and have other efficient treatment tactics.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Humanos , Distonia/terapia , Globo Pálido/fisiologia , Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/terapia , Corpo Estriado
3.
Vaccines (Basel) ; 11(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37243102

RESUMO

The State Research Center of Virology and Biotechnology "VECTOR" of the Federal Service for the Oversight of Consumer Protection and Welfare (Rospotrebnadzor) has developed the peptide-based EpiVacCorona vaccine, which is the first synthetic peptide-based antiviral vaccine for mass immunization in international vaccinology. An early clinical trial (Phase I-II) demonstrated that the EpiVacCorona vaccine is a safe product. The "Multicenter double-blind, placebo-controlled, comparative, randomized trial to assess the tolerability, safety, immunogenicity and prophylactic efficacy of the EpiVacCorona COVID-19 vaccine based on peptide antigens in 3000 volunteers aged 18 years and older" was performed regarding vaccine safety. The key objectives of the study were to evaluate the safety and prophylactic efficacy of the two-dose EpiVacCorona vaccine administered via the intramuscular route. The results of the clinical study (Phase III) demonstrated the safety of the EpiVacCorona vaccine. Vaccine administration was accompanied by mild local reactions in ≤27% of cases and mild systemic reactions in ≤14% of cases. The prophylactic efficacy of the EpiVacCorona COVID-19 vaccine after the completion of the vaccination series was 82.5% (CI95 = 75.3-87.6%). The high safety and efficacy of the vaccine give grounds for recommending this vaccine for regular seasonal prevention of COVID-19 as a safe and effective medicinal product.

4.
Front Hum Neurosci ; 16: 977784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277053

RESUMO

The proposed models of segregated functional loops describe the organization of motor control over externally triggered (ET) and internally guided (IG) movements. The dopamine deficiency in Parkinson's disease (PD) is considered to cause a disturbance in the functional loop regulating IG movements. At the same time, the neural mechanisms of movement performance and the role of basal ganglia in motor control remain unclear.The aim of this study was to compare neuronal responses in the subthalamic nucleus (STN) during ET and IG movements in PD. We found and analyzed 26 sensitive neurons in 12 PD patients who underwent surgery for implantation of electrodes for deep brain stimulation. We also analyzed the local field potentials (LFP) of the STN of six patients during the postoperative period. Patients were asked to perform voluntary movements (clenching and unclenching the fist) evoked by verbal command (ET) or self-initiated (IG). We showed heterogeneity of neuronal responses and did not find sensitive neurons associated with only one type of movement. Most cells were characterized by leading responses, indicating that the STN has an important role in movement initiation. At the same time, we found attenuation of motor responses during IG movement vs. stable responses during ET movements. LFP analysis also showed attenuation of beta desynchronization during multiple IG movements.We propose that stable neuronal response to ET movements is associated with the reboot of the motor program for each movement, while attenuation of responses to IG movement is associated with single motor program launching for multiple movements.

5.
Molecules ; 27(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684513

RESUMO

The aim of this work was to develop and validate a sensitive and robust method of liquid chromatography coupled with tandem mass spectrometry to quantitate ST-246 (tecovirimat) in plasma using an internal standard (2-hydroxy-N-{3,5-dioxo-4-azatetracyclo [5.3.2.02.6.08.10]dodec-11-en-4-yl}-5-methylbenzamide). The method was validated in negative multiple reaction monitoring mode following recommendations of the European Medicines Agency for the validation of bioanalytical methods. The calibration curve for the analyte was linear in the 10−2500 ng/mL range with determination coefficient R2 > 0.99. Intra- and inter-day accuracy and precision for three concentrations of quality control were <15%. Testing of long-term stability of ST-246 (tecovirimat) in plasma showed no degradation at −20 °C for at least 3 months. The method was applied to a clinical assay of a new antipoxvirus compound, NIOCH-14. Thus, the proposed method is suitable for therapeutic drug monitoring of ST-246 (tecovirimat) itself and of NIOCH-14 as its metabolic precursor.


Assuntos
Plasma , Espectrometria de Massas em Tandem , Benzamidas , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Humanos , Isoindóis , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
6.
Eur J Neurosci ; 53(7): 2388-2397, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32757424

RESUMO

Focal dystonia, by definition, affects a specific body part; however, it may have a widespread neural substrate. We tested this hypothesis by examining the intrinsic behaviour and the neuronal properties that are modulated by changes in the physiological behaviour of their connections, that is feedback dependence, of the isolated pallidal neurons. During deep brain stimulation surgery in 12 patients with isolated cervical dystonia (without hand involvement), we measured spontaneous as well as evoked single-unit properties in response to fist making (hand movement) or shoulder shrug (neck movements). We measured the activity of isolated neurons that were only sensitive to the neck movements, hand movement, or not responsive to hand or neck movements. The spontaneous firing behaviour, such as the instantaneous firing rate and its regularity, was comparable in all three types of neurons. The neck movement-sensitive neurons had prominent bursting behaviour in comparison with the hand neurons. The feedback dependence of the neck movement-sensitive neurons was also significantly impaired when compared to hand movement-sensitive neurons. Motor-evoked change in firing rate of neck movement-sensitive neurons rapidly declined; the decay time constant was much shorter compared to hand movement-sensitive neurons. These results suggest that in isolated cervical dystonia, at the resolution of single neurons, the deficits are much widespread, affecting the neurons that drive the neck movement as well as the hand movements. We speculate that clinically discernable dystonia occurs when additional abnormality is added to baseline dysfunctional network, and one source of such abnormality may involve feedback.


Assuntos
Distonia , Distúrbios Distônicos , Retroalimentação , Globo Pálido , Humanos , Neurônios
7.
Cerebellum ; 19(3): 409-418, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32095996

RESUMO

The relationship between two common movement disorders, dystonia and tremor, is controversial. Both deficits have correlates in the network that includes connections between the cerebellum and the basal ganglia. In order to assess the physiological relationship between tremor and dystonia, we measured the activity of 727 pallidal single-neurons during deep brain stimulation surgery in patients with cervical dystonia without head oscillations, cervical dystonia plus jerky oscillations, and cervical dystonia with sinusoidal oscillations. Cluster analyses of spike-train recordings allowed classification of the pallidal activity into burst, pause, and tonic. Burst neurons were more common, and number of spikes within spike and inter-burst intervals was shorter in pure dystonia and jerky oscillation groups compared to the sinusoidal oscillation group. Pause neurons were more common and irregular in pure tremor group compared to pure dystonia and jerky oscillation groups. There was bihemispheric asymmetry in spontaneous firing discharge in pure dystonia and jerky oscillation groups, but not in sinusoidal oscillation group. These results demonstrate that the physiology of pallidal neurons in patients with pure cervical dystonia is similar to those who have cervical dystonia combined with jerky oscillations, but different from those who have cervical dystonia combined with sinusoidal oscillations. These results imply distinct mechanistic underpinnings for different types of head oscillations in cervical dystonia.


Assuntos
Globo Pálido/fisiologia , Movimentos da Cabeça/fisiologia , Torcicolo/fisiopatologia , Tremor/fisiopatologia , Adulto , Idoso , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Torcicolo/diagnóstico , Torcicolo/terapia , Tremor/diagnóstico , Tremor/terapia , Adulto Jovem
8.
Prog Brain Res ; 249: 261-268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31325985

RESUMO

Cervical dystonia (CD) is characterized by abnormal twisting and turning of the head with associated head oscillations. It is the most common form of dystonia, which is a third most common movement disorder. Despite frequent occurrence there is paucity in adequate therapy, much of which is attributed to its uncertain pathophysiology. Recently we proposed a unifying network model highlighting the role of head neural integrator (hNI) for the pathophysiology of CD. According to our hypothesis the CD is due to abnormal output of hNI; the latter itself is not affected but its dysfunction is secondary to abnormal feedback. We hypothesized that asymmetry in the feedback to hNI is associated with severity in CD; the feedback asymmetry is greater in CD with lateralized head postures, such as turning of head in yaw plane (torticollis) or roll plane (laterocollis). The hypothesis also specifies that feedback to hNI-cerebellum, proprioception, and basal ganglia outflow (pallidus) are connected in a network; thus asymmetry is distributed through the feedback network. In 15 CD patients undergoing deep brain stimulation (DBS) surgery, with their informed consent, we used the opportunity to collect single unit neural responses and local field potential from the globus pallidus to measure whether feedback to hNI is asymmetric. Using machine learning algorithms developed to analyze single unit data, we found: (1) globus pallidus interna (GPi) firing rate, discharge pattern and gamma oscillation were asymmetric in patients with robust torticollis; (2) there was no asymmetry in these parameters in retrocollis; and (3) in those patients with oppositely directed laterocollis and torticollis. Firing rate was higher in GPi cells ipsilateral to the direction of head rotation; the asymmetry was more pronounced in tonic cells compared to burst neurons. In addition to confirming that CD is associated with an asymmetric pallidal activity, our data showed that neuronal asymmetry correlated with the degree of involuntary head turning. We propose that asymmetric pallidal activity results in asymmetric feedback to hNI causing its dysfunction.


Assuntos
Globo Pálido/fisiopatologia , Aprendizado de Máquina , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Redes Neurais de Computação , Torcicolo/fisiopatologia , Adulto , Estimulação Encefálica Profunda , Fenômenos Eletrofisiológicos , Humanos
9.
Neuroreport ; 30(8): 538-543, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30950935

RESUMO

This study assessed the effects of combined low-dose neutron and γ-ray irradiation on hippocampal neurogenesis and hippocampal-dependent memory. Neural progenitor cell division and survival were evaluated in brain sections and whole hippocampal preparations following head irradiation at a dose of 0.34 Gy for neutron radiation and 0.36 Gy for γ-ray radiation. Hippocampal-dependent memory formation was tested in a contextual fear conditioning task following irradiation at doses of 0.4 Gy for neutron radiation and 0.42 Gy for γ-ray radiation. Cell division was suppressed consistently along the entire dorsoventral axis of the hippocampus 24 h after the irradiation, but quiescent stem cells remained unaffected. The control and irradiated mice showed no differences in terms of exploratory behavior or anxiety 6 weeks after the irradiation. The ability to form hippocampus-dependent memory was also unaffected. The data may be indicative of a negligible effect of the low-dose of fast neutron irradiation and the neurogenesis suppression on animal behavior at 6 weeks after irradiation.


Assuntos
Condicionamento Clássico/efeitos da radiação , Radiação Eletromagnética , Hipocampo/efeitos da radiação , Neurogênese/efeitos da radiação , Animais , Divisão Celular/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos da radiação
10.
Neurobiol Dis ; 125: 45-54, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677494

RESUMO

Dystonia is the third most common movement disorder affecting three million people worldwide. Cervical dystonia is the most common form of dystonia. Despite common prevalence the pathophysiology of cervical dystonia is unclear. Traditional view is that basal ganglia is involved in pathophysiology of cervical dystonia, while contemporary theories suggested the role of cerebellum and proprioception in the pathophysiology of cervical dystonia. It was recently proposed that the cervical dystonia is due to malfunctioning of the head neural integrator - the neuron network that normally converts head velocity to position. Most importantly the neural integrator model was inclusive of traditional proposal emphasizing the role of basal ganglia while also accommodating the contemporary view suggesting the involvement of cerebellum and proprioception. It was hypothesized that the head neural integrator malfunction is the result of impairment in cerebellar, basal ganglia, or proprioceptive feedback that converge onto the integrator. The concept of converging input from the basal ganglia, cerebellum, and proprioception to the network participating in head neural integrator explains that abnormality originating anywhere in the network can lead to the identical motor deficits - drifts followed by rapid corrective movements - a signature of neural integrator dysfunction. We tested this hypothesis in an experiment examining simultaneously recorded globus pallidal single-unit activity, synchronized neural activity (local field potential), and electromyography (EMG) measured from the neck muscles during the standard-of-care deep brain stimulation surgery in 12 cervical dystonia patients (24 hemispheres). Physiological data were collected spontaneously or during voluntary shoulder shrug activating the contralateral trapezius muscle. The activity of pallidal neurons during shoulder shrug exponentially decayed with time constants that were comparable to one measured from the pretectal neural integrator and the trapezius electromyography. These results show that evidence of abnormal neural integration is also seen in globus pallidum, and that latter is connected with the neural integrator. Pretectal single neuron responses consistently preceded the muscle activity; while the globus pallidum internus response always lagged behind the muscle activity. Globus pallidum externa had equal proportion of lag and lead neurons. These results suggest globus pallidum receive feedback from the muscles or the efference copy from the integrator or the other source of the feedback. There was bi-hemispheric asymmetry in the pallidal single-unit activity and local field potentials. The asymmetry correlated with degree of lateral head turning in cervical dystonia patients. These results suggest that bihemispheric asymmetry in the feedback leads to asymmetric dysfunction in the neural integrator causing head turning.


Assuntos
Retroalimentação Sensorial/fisiologia , Globo Pálido/fisiopatologia , Modelos Neurológicos , Torcicolo/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais , Adulto Jovem
11.
Clin Neurophysiol ; 128(12): 2482-2490, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29100066

RESUMO

OBJECTIVE: The aim of this study was to distinguish neuronal activity patterns in the human ventral thalamus and reveal common and disease-specific features in patients with Parkinson's disease (PD) and cervical dystonia (CD). METHODS: Single unit activity of neurons was recorded during microelectrode-guided thalamotomies. We classified neurons of surgical target and surrounding area into patterns and compared their characteristics and responsiveness to voluntary movement between PD and CD patients. RESULTS: We distinguished five patterns of neuronal activity: single, LTS burst, mixed, non-LTS burst and longburst patterns. The burst and mixed patterns showed significant differences in several basic and burst characteristics. We showed that there were no disease-specific patterns or significant differences in pattern distribution between studied patients. However, burst patterns had an unbalanced distribution between disease conditions. In addition, we found difference in LTS burst characteristics between surgical targets and surrounding nuclei. All identified patterns, except the long burst pattern, were reactive to the motor tasks and to contraction of the pathological muscles. CONCLUSIONS: The ventral thalamus was characterised by common neuronal activity patterns which differed in characteristics between PD and CD. SIGNIFICANCE: Our findings highlight patterns of neuronal activity of the human ventral thalamus and specific pathological features.


Assuntos
Monitorização Neurofisiológica Intraoperatória/métodos , Neurônios/fisiologia , Doença de Parkinson/fisiopatologia , Torcicolo/fisiopatologia , Núcleos Ventrais do Tálamo/fisiopatologia , Potenciais de Ação/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/cirurgia , Torcicolo/diagnóstico , Torcicolo/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...